```
Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201-Meta / General / Second Exam
```

```
        Started on Sunday, 10 January 2021, 9:57 AM
        State Finished
    Completed on Sunday, }10\mathrm{ January 2021, 10:58 AM
        Time taken 1 hour 1 min
            Grade 29.00 out of 32.00 (91%)
```

Question 1
Incorrect
Mark 0.00 out of
1.00

```
Every spanning set for \(\mathbb{R}^{3}\) contains at least 3 vectors.
Select one:
- a. False \(\boldsymbol{x}\)
b. True
Question 2
Correct
Mark 1.00 out of
1.00
Let \(S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x=\frac{1}{y}\right\}\), then \(S\) is a subspace of \(\mathbb{R}^{2}\).
Select one:
a. True
- b. False \(V\)
The correct answer is: False
```

Question 3 Correct	Let $E=[2+x, 3-x], F=[1$,
Mark 1.00 out of	Select one:
1.00	a. $\left(\begin{array}{cc}2 & 3 \\ 1 & -1\end{array}\right)$
	b. $\left(\begin{array}{cc}2 & 1 \\ 3 & -1\end{array}\right)$
	c. $\left(\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right)$
	d. $\left(\begin{array}{cc}1 & -1 \\ 3 & 2\end{array}\right)$
	The correct answer is: $\left(\begin{array}{cc}2 & 3 \\ 1 & -1\end{array}\right)$

Question 4
Correct
Mark 1.00 out of
1.00

Let $E=\left[2+x, 1-x, x^{2}+1\right]$ be an ordered basis for P_{3}. If $[p(x)]_{E}=\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)$, then

Select one:
a. $p(x)=3 x^{2}+x-3$
(b. $p(x)=3 x^{2}+2 x+4$
c. $p(x)=x^{2}-x+3$
d. $p(x)=3 x^{2}+2 x+5$

The correct answer is: $p(x)=3 x^{2}+2 x+4$

Question 5
Correct
Mark 1.00 out of
1.00 \qquad

Question 6
Correct
Mark 1.00 out of 1.00

If A is a 3×3-matrix, and $A x=0$ has only the zero solution, then nullity $(A)=$
Select one:
a. 1
b. 2
(-) c. 0
d. 3

The correct answer is: 0

Let $S=\left\{\left(\begin{array}{c}a+b+2 c \\ a+2 c \\ a+b+2 c\end{array}\right): a, b \in \mathbb{R}\right\}$. Then dimension of S equals

Select one:

a. 0
b. 1
c. 3

- d. 2

The correct answer is: 2

Question 7
Incorrect
Mark 0.00 out of 1.00

Which of the following is not a basis for the corresponding space

Select one:
a. $\left\{(1,1)^{T},(2,-3)^{T}\right\} ; \mathbb{R}^{2}$
b. $\{5-x, x-1\} ; P_{2}$
© c. $\left\{x+4,1-x^{2}, x^{2}+x+3\right\} ; P_{3}$
\times
d. $\left\{(-2,-1,-1)^{T},(-3,-3,0)^{T},(2,0,2)^{T}\right\} ; \mathbb{R}^{3}$

The correct answer is: $\left\{(-2,-1,-1)^{T},(-3,-3,0)^{T},(2,0,2)^{T}\right\} ; \mathbb{R}^{3}$

Question 8
Correct
Mark 1.00 out of
1.00 \qquad

Correct
Mark 1.00 out of
1.00 \qquad
The vectors $\left\{x^{2}+2 x+1, x-1, x^{2}+x+1\right\}$ form a basis for P_{3}.
Select one:

- a. True \checkmark
b. False

The correct answer is: True
Question 10
Correct
Mark 1.00 out of
1.00

If A is an $n \times n$-matrix and for each $b \in \mathbb{R}^{n}$ the system $A x=b$ has a unique solution, then
Select one:

- a. A is nonsingular
b. $\operatorname{nullity}(A)=1$
c. $\operatorname{rank}(A)=n-1$
d. A is singular

The correct answer is: A is nonsingular

Question 11
Correct
Mark 1.00 out of
1.00

If V is a vector space of dimension n, then any subset from V that has less than n vectors is not a spanning set for V.
Select one:

- a. True \checkmark
b. False

The correct answer is: True

The coordinate vector of $\left(\begin{array}{l}-3 \\ -2 \\ -5\end{array}\right)$ with respect to the ordered basis $\left[\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)\right]$ is

Select one:
a. $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$
() b. $\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)$
c. $\left(\begin{array}{c}1 \\ -4 \\ 3\end{array}\right)$
d. $\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)$

The correct answer is: $\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)$
Question 12
Correct
Mark 1.00 out of
1.00
1.00

If A is a 3×5-matrix, rows of A are linearly independent, then
Select one:
a. $\operatorname{rank}(A)=\operatorname{nullity}(A)+2$
b. $\operatorname{rank}(A)=\operatorname{nullity}(A)$

- c. $\operatorname{rank}(A)=\operatorname{nullity}(A)+1$
d. $\operatorname{rank}(A)=\operatorname{nullity}(A)+3$

The correct answer is: $\operatorname{rank}(A)=\operatorname{nullity}(A)+1$

Question 13
Correct
Mark 1.00 out of
1.00

If A is a 4×6 matrix, then nullity of $A \geq 2$.
Select one:

- a. True \checkmark
b. False

The correct answer is: True

Question 14
Correct
Mark 1.00 out of
1.00 \square

If A is a 3×3-matrix, and $A x=0$ has only the zero solution, then $\operatorname{rank}(A)=$
Select one:

- a. 3
b. 1
c. 2
d. 0

The correct answer is: 3

```
Let }V\mathrm{ be a vector space of dimension 4 and W={v, ,v2, v},\mp@subsup{v}{4}{},\mp@subsup{v}{4}{}}\mathrm{ a set of nonzero vectors of }V\mathrm{ , then
Select one:
    a. W is a basis
    b.}W\mathrm{ is a spanning set
    c. W is linearly independent
- d. W is linearly dependent
```

The correct answer is: W is linearly dependent
Question 16
Incorrect
Mark 0.00 out of
1.00

Let $S=\{f \in C[-1,1]: f(-1)=f(1)\}$, then S is a subspace of $C[-1,1]$.
Select one:
a. True

- b. False \boldsymbol{x}
Question 17
Correct
Mark 1.00 out of
1.00

If A is an $m \times n$-matrix, $m \neq n$, then either the rows or the columns of A are linearly independent

Select one:

- a. False \checkmark
b. True

The correct answer is: False

Question 18
Correct
Mark 1.00 out of
1.00

If $f_{1}, f_{2}, \cdots, f_{n} \in C^{n-1}[a, b]$ and $W\left[f_{1}, f_{2}, \cdots, f_{n}\right]\left(x_{0}\right) \neq 0$ for some $x_{0} \in[a, b]$, then $f_{1}, f_{2}, \cdots, f_{n}$ are Select one:
© a. linearly independent. \downarrow
b. linearly dependent
c. form a spanning set for $C^{n-1}[a, b]$

The correct answer is: linearly independent.

Question 19
Correct
Mark 1.00 out of 1.00

Question 20
Correct
Mark 1.00 out of 1.00
let A be a 4×7-matrix, if the row echelon form of A has 2 nonzero rows, then dim (column space of A) is

Select one:
a. 3
b. 5

- c. $2 \checkmark$
d. 7

The correct answer is: 2

Let $E=\left[2+x, 1-x, x^{2}+1\right]$ be an ordered basis for P_{3}. If $p(x)=-3 x^{2}+x+5$, then the coordinate vector of $p(x)$ with respect to E is

Select one:
a. $\left(\begin{array}{c}2 \\ -3 \\ 3\end{array}\right)$
(c) b. $\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)$
c. $\left(\begin{array}{l}3 \\ 5 \\ 4\end{array}\right)$
d. $\left(\begin{array}{c}3 \\ -3 \\ 2\end{array}\right)$

The correct answer is: $\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)$

Question 21
Correct
Mark 1.00 out of
1.00
\qquad

The functions $\sin x, \cos x, \sin (2 x)$ in $C^{2}[0,2 \pi]$ are
Select one:
a. linearly dependent
© b. linearly independent \checkmark

The correct answer is: linearly independent

Question 22
Correct
Mark 1.00 out of
1.00 \square
Select one:

- a. False
b. True

The correct answer is: False

Question 23
Correct
Mark 1.00 out of
1.00

The transition matrix from the standard basis $S=\left[e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}\right]$ to the ordered basis $U=\left[u_{1}=\binom{1}{2}, u_{2}=\binom{3}{7}\right]$ is

Select one:
a. $T=\left(\begin{array}{cc}1 & -3 \\ -2 & 7\end{array}\right)$
b. $T=\left(\begin{array}{cc}-7 & 3 \\ 2 & -1\end{array}\right)$
© с. $T=\left(\begin{array}{cc}7 & -3 \\ -2 & 1\end{array}\right)$
d. $T=\left(\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right)$

The correct answer is: $T=\left(\begin{array}{cc}7 & -3 \\ -2 & 1\end{array}\right)$

Question 24
Correct
Mark 1.00 out of
1.00

Let V be a vector space, $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ a spanning set for V, and $v \in V$, then the vectors $\left\{v_{1}, v_{2}, \ldots v_{n}, v\right\}$ form a spanning set for V.

Select one:
a. False
© b. True \downarrow

Question 25
Correct
Mark 1.00 out of
1.00

The nullity of $A=\left(\begin{array}{ccccc}1 & 4 & 1 & 2 & 1 \\ 2 & 6 & -1 & 2 & -1 \\ 2 & 10 & 0 & 4 & 0\end{array}\right)$ is
Select one:
a. 3
b. 0
c. 1

- d. 2

The correct answer is: 2

```
Question 26
Correct
Mark 1.00 out of 1.00
``` \(\qquad\)

Question 27
Correct
Mark 1.00 out of
1.00
\(\square\)

Question 28
Correct
Mark 1.00 out of
1.00

The vectors \(\left\{(1,-1,1)^{T},(1,-1,2)^{T},(1,-1,2)^{T}\right\}\) form a basis for \(\mathbb{R}^{3}\).

Select one:
- a. False \(\checkmark\)
b. True

The correct answer is: False

The coordinate vector of \(8+6 x\) with respect to the basis \([2 x, 2]\) is \((4,3)^{T}\)
Select one:
- a. False \(\checkmark\)
b. True

The correct answer is: False

Let \(A\) be a \(5 \times 4\) matrix, and \(\operatorname{rank}(A)=4\)
Select one:
a. \(A\) has a row of zeros
- b. The columns of \(A\) are linearly independent
c. \(\operatorname{nullity}(A)=1\)
d. The rows of \(A\) are linearly independent

The correct answer is: The columns of \(A\) are linearly independent
```

Question }2
Correct
Mark 1.00 out of
1.00

```

Let \(A\) be a \(4 \times 3\) matrix, and \(\operatorname{nullity}(A)=0\), then

Select one:
a. The rows of \(A\) are linearly independent
- b. The columns of \(A\) are linearly independent
c. \(\operatorname{rank}(A)=1\)
d. the columns of \(A\) form a basis for \(\mathbb{R}^{4}\)

The correct answer is: The columns of \(A\) are linearly independent
```

Question 30
Correct
Mark 1.00 out of
1.00

```
Question \(\mathbf{3 0}\)
Correct
Mark 1.00 out of
1.00

Question 31
Correct
Mark 1.00 out of
1.00
dimension of the subspace \(S=\operatorname{Span}\left\{A_{1}=\left(\begin{array}{cc}1 & 2 \\ 1 & 0\end{array}\right), A_{2}\left(\begin{array}{cc}0 & -1 \\ 1 & 3\end{array}\right), A_{3}=\left(\begin{array}{cc}-3 & -8 \\ -1 & 6\end{array}\right)\right\}\) is

Select one:
a. 1
(b. b. 2

c. 0
d. 3

The correct answer is: 2

If the columns of \(A_{n \times n}\) are linearly independent and \(b \in \mathbb{R}^{n}\), then the system \(A x=b\) is inconsistent.

Select one:
- a. False \(\vee\)
b. True

The correct answer is: False
\begin{tabular}{l}
Question 32 \\
Correct \\
Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}

If \(v_{1}, v_{2}, \cdots, v_{k}\) are vectors in a vector space \(V\), and \(\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{k}\right)=\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{k-1}\right)\), then \(v_{k}\) can be written as alinear combination of \(v_{1}, v_{2}, \cdots, v_{k-1}\)

Select one:
- a. True
b. False

The correct answer is: True```

